*Operations and Algebraic Thinking 1.OA***Represent and solve problems involving addition and subtraction.**

1. Use addition and subtraction within 20 to solve word problems involving situations of

adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions,

e.g., by

e.g., by

*using objects, drawings, and equations with a symbol*

for

for

*t*

*he unknown number to represent the*

*problem.*

2. Solve word problems that call for addition of three whole numbers whose sum is less than

or equal to 20,

*e.g., by using*

*objects, drawings, and equations with a symbol for*

the unknown number to

the unknown number to

*represent the problem.*

**Understand and apply properties of operations and the relationship between**

addition and subtraction.

addition and subtraction.

3. Apply properties of operations as strategies to add and subtract.

*Examples: If 8 + 3 = 11 is known,*

*then 3 + 8 = 11 is also*

*known. (Commutative property of addition.) To add 2 + 6 + 4, the second two*

*numbers can be added to make a ten, so 2 + 6 +*

*4 = 2 + 10 = 12. (Associative property of addition.)*

4. Understand subtraction as an unknown-addend problem.

*For example, subtract 10 – 8*

by finding

by finding

*the number that makes 10*

*when added to 8.*

**Add and subtract within 20.**

*5.*Relate counting to addition and subtraction

*(e.g., by counting on 2 to add*

*2).*

6. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10.

Use strategies such as counting on;

making ten

*(e.g., 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14)*; decomposing a number leading to a ten

*(e.g., 13 – 4*

*= 13 – 3 – 1 = 10 – 1 =*

*9)*; using the relationship between addition and subtraction

*(e.g., knowing that 8 + 4 = 12, one knows 12 – 8= 4)*; and creating equivalent but easier or known

sums

*(e.g., adding 6 +7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13).*

**Work with addition and subtraction equations.**

7. Understand the meaning of the equal sign, and determine if equations involving addition and

subtraction are true or false.

*For*

*example, which*

*of the following equations are true and which are*

*false? 6 = 6, 7 = 8 – 1,*

*5 + 2 = 2 + 5, 4 + 1 = 5 + 2.*

8. Determine the unknown whole number in an addition or subtraction equation relating to

three whole numbers.

*For example,*

*determine the*

*unknown number that makes*

the equation true in each of the

the equation true in each of the

*equations 8 +? = 11, 5 = – 3, 6 + 6 = .*

**Number and Operations in Base Ten 1.NBT****Extend the counting sequence.**

1. Count to 120, starting at any number less than 120. In this range, read and write numerals and

represent a number of objects with a written numeral.

**Understand place value.**

2. Understand that the two digits of a two-digit number represent amounts of tens and ones.

Understand the following as special cases:

a. 10 can be thought of as a bundle of ten ones — called a “ten.”

b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven,

eight, or nine ones.

c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to one, two, three, four, five, six, seven,

eight, or nine tens (and 0 ones).

3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the

results of comparisons with the symbols >, =, and <.

**Use place value understanding and properties of operations to add and subtract.**

4. Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit

number and a multiple of 10, using concrete models or drawings and strategies based on place

value, properties of operations, and/or the relationship between addition and subtraction; relate

the strategy to a written method and explain the reasoning used. Understand that in adding

two-digit numbers, one adds tens and tens, ones and ones;

and sometimes it is necessary to compose a ten

5. Given a two-digit number, mentally find 10 more or 10 less than the number, without

having to count; explain the reasoning used

6. Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90

*(positive or*

*zero differences)*, using concrete models or drawings and strategies based on place value,

properties of operations, and/or the relationship between addition and subtraction; relate the

strategy to a written method and explain the reasoning used.

**Measurement and Data 1.MD****Measure lengths indirectly and by iterating length units.**

1. Order three objects by length; compare the lengths of two objects indirectly

by using a third object.

2. Express the length of an object as a whole number of length units, by laying multiple copies

of a shorter object

*(the length*

*unit)*end to end; understand that the length measurement

of an object is the number of same-size length units that span it with no gaps or overlaps.

*Limit to contexts*

*where the object being measured is spanned by a whole number of length*

units

units

*with no gaps or*

*overlaps.*

**Tell and write time.**

3. Tell and write time in hours and half-hours using analog and digital clocks.

**Represent and interpret data.**

4. Organize, represent, and interpret data with up to three categories; ask and answer

questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

**Geometry 1.G****Reason with shapes and their attributes.**

1. Distinguish between defining attributes

*(e.g., triangles are closed and three-sided)*versus

non-defining attributes

*(e.g., color,*

*orientation, overall size)*; build and draw shapes

to possess defining attributes.

2. Compose two-dimensional shapes

*(rectangles, squares, trapezoids, triangles, half-circles, and*

*quarter-circles)*or three-dimensional shapes

*(cubes, right rectangular prisms, right circular cones,*

*and right circular cylinders)*to create a composite shape, and compose

new shapes from the composite shape.

3. Partition circles and rectangles into two and four equal shares, describe the shares using the

words

*halves*,

*fourths*, and

*quarters*, and use the phrases

*half of*,

*fourth of*, and

*quarter of*.

Describe the whole as two of, or four.